3.124 \(\int x \sqrt{a+a \sin (c+d x)} \, dx\)

Optimal. Leaf size=58 \[ \frac{4 \sqrt{a \sin (c+d x)+a}}{d^2}-\frac{2 x \cot \left (\frac{c}{2}+\frac{d x}{2}+\frac{\pi }{4}\right ) \sqrt{a \sin (c+d x)+a}}{d} \]

[Out]

(4*Sqrt[a + a*Sin[c + d*x]])/d^2 - (2*x*Cot[c/2 + Pi/4 + (d*x)/2]*Sqrt[a + a*Sin[c + d*x]])/d

________________________________________________________________________________________

Rubi [A]  time = 0.0681968, antiderivative size = 58, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 16, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.188, Rules used = {3319, 3296, 2638} \[ \frac{4 \sqrt{a \sin (c+d x)+a}}{d^2}-\frac{2 x \cot \left (\frac{c}{2}+\frac{d x}{2}+\frac{\pi }{4}\right ) \sqrt{a \sin (c+d x)+a}}{d} \]

Antiderivative was successfully verified.

[In]

Int[x*Sqrt[a + a*Sin[c + d*x]],x]

[Out]

(4*Sqrt[a + a*Sin[c + d*x]])/d^2 - (2*x*Cot[c/2 + Pi/4 + (d*x)/2]*Sqrt[a + a*Sin[c + d*x]])/d

Rule 3319

Int[((c_.) + (d_.)*(x_))^(m_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[((2*a)^IntPart[n
]*(a + b*Sin[e + f*x])^FracPart[n])/Sin[e/2 + (a*Pi)/(4*b) + (f*x)/2]^(2*FracPart[n]), Int[(c + d*x)^m*Sin[e/2
 + (a*Pi)/(4*b) + (f*x)/2]^(2*n), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[a^2 - b^2, 0] && IntegerQ[n
 + 1/2] && (GtQ[n, 0] || IGtQ[m, 0])

Rule 3296

Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + (f_.)*(x_)], x_Symbol] :> -Simp[((c + d*x)^m*Cos[e + f*x])/f, x] +
Dist[(d*m)/f, Int[(c + d*x)^(m - 1)*Cos[e + f*x], x], x] /; FreeQ[{c, d, e, f}, x] && GtQ[m, 0]

Rule 2638

Int[sin[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[Cos[c + d*x]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin{align*} \int x \sqrt{a+a \sin (c+d x)} \, dx &=\left (\csc \left (\frac{c}{2}+\frac{\pi }{4}+\frac{d x}{2}\right ) \sqrt{a+a \sin (c+d x)}\right ) \int x \sin \left (\frac{c}{2}+\frac{\pi }{4}+\frac{d x}{2}\right ) \, dx\\ &=-\frac{2 x \cot \left (\frac{c}{2}+\frac{\pi }{4}+\frac{d x}{2}\right ) \sqrt{a+a \sin (c+d x)}}{d}+\frac{\left (2 \csc \left (\frac{c}{2}+\frac{\pi }{4}+\frac{d x}{2}\right ) \sqrt{a+a \sin (c+d x)}\right ) \int \cos \left (\frac{c}{2}+\frac{\pi }{4}+\frac{d x}{2}\right ) \, dx}{d}\\ &=\frac{4 \sqrt{a+a \sin (c+d x)}}{d^2}-\frac{2 x \cot \left (\frac{c}{2}+\frac{\pi }{4}+\frac{d x}{2}\right ) \sqrt{a+a \sin (c+d x)}}{d}\\ \end{align*}

Mathematica [A]  time = 0.154155, size = 76, normalized size = 1.31 \[ -\frac{2 \sqrt{a (\sin (c+d x)+1)} \left ((d x-2) \cos \left (\frac{1}{2} (c+d x)\right )-(d x+2) \sin \left (\frac{1}{2} (c+d x)\right )\right )}{d^2 \left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[x*Sqrt[a + a*Sin[c + d*x]],x]

[Out]

(-2*((-2 + d*x)*Cos[(c + d*x)/2] - (2 + d*x)*Sin[(c + d*x)/2])*Sqrt[a*(1 + Sin[c + d*x])])/(d^2*(Cos[(c + d*x)
/2] + Sin[(c + d*x)/2]))

________________________________________________________________________________________

Maple [C]  time = 0.053, size = 93, normalized size = 1.6 \begin{align*}{\frac{-i\sqrt{2} \left ( -idx+dx{{\rm e}^{i \left ( dx+c \right ) }}+2\,i{{\rm e}^{i \left ( dx+c \right ) }}-2 \right ) \left ({{\rm e}^{i \left ( dx+c \right ) }}+i \right ) }{ \left ({{\rm e}^{2\,i \left ( dx+c \right ) }}-1+2\,i{{\rm e}^{i \left ( dx+c \right ) }} \right ){d}^{2}}\sqrt{-a \left ( -2-2\,\sin \left ( dx+c \right ) \right ) }} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(a+a*sin(d*x+c))^(1/2),x)

[Out]

-I*2^(1/2)*(-a*(-2-2*sin(d*x+c)))^(1/2)/(exp(2*I*(d*x+c))-1+2*I*exp(I*(d*x+c)))*(-I*d*x+d*x*exp(I*(d*x+c))+2*I
*exp(I*(d*x+c))-2)*(exp(I*(d*x+c))+I)/d^2

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{a \sin \left (d x + c\right ) + a} x\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+a*sin(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(a*sin(d*x + c) + a)*x, x)

________________________________________________________________________________________

Fricas [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: UnboundLocalError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+a*sin(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

Exception raised: UnboundLocalError

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int x \sqrt{a \left (\sin{\left (c + d x \right )} + 1\right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+a*sin(d*x+c))**(1/2),x)

[Out]

Integral(x*sqrt(a*(sin(c + d*x) + 1)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{a \sin \left (d x + c\right ) + a} x\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+a*sin(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(a*sin(d*x + c) + a)*x, x)